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Abstract
Topological indices are widely employed in the determination of the correlation between the physico-chemical properties

of nanostructures. The development of novel nanostructures has important implications for the food science, electronics,
pharmaceutical, medical, communication, and information sectors among others. In this paper, we introduce a new topological
index called the first closed neighborhood Zagreb index and it exhibits good correlation with acentric factor of an octane isomers.
We compute the formula for first closed neighborhood Zagreb index for some standard classes of graphs and investigate their
mathematical properties. Further, we derive the expression for first closed neighborhood Zagreb index of TUC4C8(R)[p,q]
nanostructures as well as subdivision graph and the line graph of the subdivision graph of TUC4C8(R)[p,q] nanostructures.
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1. Introduction

Now a days chemical graph theory gaining attention due to its applications in QSAR / QSPR study.
The quantitative structure property relationship (QSPR) and quantitative structure activity relationship
(QSAR) reflects the applications of topological indices [10, 15]. Topological descriptors defined on chemical
structures plays a key role in examining the properties and activities of the chemical molecules. According to
the IUPAC definition, a topological index (or molecular structure descriptor) is a numerical value associated
with chemical constitution for correlation of chemical structure with various physical properties, chemical
reactivity or biological activity [7]. These indices are widely utilized in the study of chemical graph theory,
where graphs represent molecular structures, but they also have applications in various fields, such as network
analysis, biology, and computer science, engineering etc. A molecular graph is a simple graph whose vertices
corresponds to the atoms and whose edges corresponds to the bonds. There are various topological indices
defined till today among them, first Zagreb index is the first degree based topological index proposed in
1972 [5].

In this article, we considered simple, finite, undirected and connected graphs. Let G be a graph with
vertex set V(G) and edge set E(G) having order n and size m respectively. The degree of a vertex u in G
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is the number of vertices adjacent to u and denoted by dG(u) and the degree of an edge e=uv is defined
as dG(e) = dG(u) + dG(v) − 2. The neighborhood of a vertex u is defined as the set of vertices adjacent to
u. We refer [4, 9] for undefined graph terminologies and notations. The degree sum of neighbor of a vertex
u is SG(u) =

∑
u∈NG(u) dG(u). Let NG[u] be the closed neighborhood of a vertex u, that includes u and

its neighbors. The degree sum of closed neighbor of a vertex u is SG[u] =
∑

u∈NG[u] SG(u) + dG(u). Let
G be a graph, then subdivision graph S(G) is a graph obtained from G by inserting a vertex of degree two
into every edge of G [9]. The line graph L(G) is a graph derived from G in such a way that the edges in G

are replaced by vertices in L(G) and two vertices in L(G) are connected whenever the corresponding edges
in G are adjacent [9].

In 1972, Gutman and Trinajstić defined the first and second Zagreb indices [8].
The first Zagreb index is defined as

M1(G) =
∑

u∈V(G)

(dG(u))2 =
∑

uv∈E(G)

(dG(u) + dG(v)). (1.1)

The second Zagreb index is defined as

M2(G) =
∑

uv∈E(G)

dG(u)dG(v). (1.2)

The first neighborhood Zagreb index is defined in [2] as

NM1(G) =
∑

u∈V(G)

SG(u)2. (1.3)

Inspired by the first neighborhood Zagreb index, we defined the new molecular descriptor called first closed
neighborhood Zagreb index(FCNZI). The first closed neighborhood Zagreb index is defined as the sum of
square of closed neighborhood degree sum of vertices of a graph G and is denoted by CM1(G). Then

CM1(G) =
∑

u∈V(G)

SG[u]2. (1.4)

The following discussion is organized into four sections that covers various features of the first closed
neighborhood Zagreb index. In first section, we study its chemical applications to octane isomers. The
FCNZI for some standard classes of graphs is examined in the second section. The mathematical properties of
FCNZI are explored in the third section and the fourth section delves with the FCNZI of some nanostructures.

2. Chemical applicability of first closed neighborhood Zagreb index to octane isomers

The correlation coefficient is determined to evaluate the efficiency of a topological index in predicting
the physicochemical behavior of the chemical substances. The topological index with significant correlation
coefficient value greater than 0.8 are highly recommendable in QSAR/QSPR analysis. The first closed
neighborhood Zagreb index exhibits strong correlation factors, making it highly valuable in quantitative
structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR) analysis.
This section explores the linear regression analysis between FCNZI and various properties, including entropy
(S), acentric factor (AcentFac), and standard enthalpy of vaporization (DHVAP) to octane isomers. We have
observed that FCNZI is highly correlated with acentric factor. The physico-chemical properties of octane
isomers (column 1-4) were sourced from the International Academy of Mathematical Chemistry website
(http://www.iamc-online.org/) [11], and the last column is obtained by the definition of FCNZI as detailed
in Table 1.
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Table 1: Physico-chemical properties of Octane isomers
Octane Isomer Entropy AccentFac DHVAP CM1(G)

octane 111.67 0.397898 9.915 212
2-methyl-heptane 109.84 0.377916 9.484 236
3-methyl-heptane 111.26 0.371002 9.521 280
4-methyl-heptane 109.32 0.371504 9.483 246
3-ethyl-hexane 109.43 0.362472 9.476 254
2,2-dimethyl-hexane 103.42 0.339426 8.915 290
2,3-dimethyl-hexane 108.02 0.348247 9.272 276
2,4-dimethyl-hexane 106.98 0.344223 9.029 278
2,5-dimethyl-hexane 105.72 0.356883 9.051 260
3,3-dimethyl-hexane 104.74 0.322596 8.973 306
3,4-dimethyl-hexane 106.59 0.340345 9.316 324
2-methyl-3-ethyl pentane 106.06 0.332433 9.209 286
3-methyl-3-ethyl pentane 101.48 0.306899 9.081 320
2,2,3-trimethyl-pentane 101.61 0.300816 8.826 336
2,2,4-trimethyl-pentane 104.03 0.30537 8.402 318
2,3,3-trimethyl-pentane 102.02 0.293177 8.897 342
2,3,4-trimethyl-pentane 102.3 0.317422 9.014 308
2,2,3,3-tetramethylbutane 93.06 0.25294 8.41 392

Using the information in Table 1, we generate the linear regression models for each physical parameter
such as (entropy (S), acentric factor (AcentFac), and standard enthalpy of vaporization (DHVAP)) with
FCNZI are obtained by utilizing the least squares fitting method as implemented in R software [13]. The
fitted models are

S = −0.09253(±0.01183)CM1(G) + 132.47(±0.7928) (2.1)
AcentFac = −0.00077(±1.773e− 02)CM1(G) + 0.5636(±0.004466) (2.2)
DHVAP = −0.007174(±0.001282)CM1(G) + 11.2244(±0.2297) (2.3)

Figure 1: Linear regression of the entropy v/s FCNZI

3. The first closed neighborhood Zagreb index of some standard classes of graphs

Definition 3.1. [9] A complete bipartite graph Km,n is a graph whose vertex set V can be partitioned into
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Figure 2: Linear regression of the acentFac v/s FCNZI

Figure 3: Linear regression of the DHVAP v/s FCNZI

Table 2: Correlation coefficient and residual standard error of regression models
Physical property Absolute value of the correlation

coefficient
Residual standard error

Entropy 0.8903812 2.119758
Acentric Factor 0.9556892 0.0107568
DHVAP 0.8136345 0.2297067
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two subsets V1 and V2 with m and n vertices respectively, such that every vertex of V1 joins to every other
vertices of V2.

Definition 3.2. [9] A complete bipartite graph K1,n is called a star graph.

Definition 3.3. [1] The crown graph S0
n for an integer n ⩾ 3 is the graph with vertex set {u1,u2, ...,un, v1, v2, ..., vn}

and edge set
{
uivj; 1 ⩽ i, j ⩽ n, i ̸= j

}
. Therefore S0

n coincides with the complete bipartite graph kn,n with
the horizontal edges removed.

Definition 3.4. [6] The ladder graph Ln (n ⩾ 2) is the Cartesian product graph P2 × Pn, and contains 2n
vertices and 3n− 2 edges.

Definition 3.5. [6] The wheel graphWn is constructed by adding an edge from the single vertex of K1(central
vertex) to each of the vertices in the cycle Cn. Therefore, Wn is essentially the join graph Cn +K1, where
K1 is connected to all vertices of Cn.

Definition 3.6. [3] The gear graph Gn is obtained from the wheel graph Wn by adding a vertex between
every pair of adjacent vertices of the cycle Cn.

Definition 3.7. [6] A friendship graph Fn is a graph in which every two distinct vertices have exactly one
common adjacent vertex.

Definition 3.8. [6] The cocktail party graph CPn,n is the graph consisting of two rows of paired vertex in
which all vertex but the paired ones are connected with a graph edge.

Definition 3.9. [6] The helm graph Hn is the graph obtained from the wheel graph Wn by adjoining a
pendant edge at each vertex of the cycle Cn.

In this section, we obtain the expressions of FCNZI for path, cycle, complete graph, complete bipartite
graph, star graph, crown graph, ladder graph, wheel graph, gear graph, friendship graph, cocktail party
graph and helm graph.

Theorem 3.10. For path Pn, where n ⩾ 5, CM1(Pn) = 36n− 76.

Proof. Let Pn be the path having order n and size n− 1. For n ⩾ 5, the closed neighborhood degree of two
pendant vertex is 3, the closed neighborhood degree of two vertices which is adjacent to pendant vertex is
5 and the closed neighborhood degree of remaining vertices is n− 4, then we have following Table 3.

Table 3: Vertex partition of the path based on closed neighborhood degree.
SPn

[u], 3 5 6
where u ∈ V(Pn)

Number of vertices 2 2 n− 4

Using the values from Table 3 in equation 1.4, we obtain
CM1(Pn) = 2× 32 + 2× 52 + (n− 4)× 62

= 36n− 76.

Theorem 3.11. For cycle Cn, where n ⩾ 3, CM1(Cn) = 36n.

Proof. Let Cn be the cycle having order n and size m. For n ⩾ 3, the closed neighborhood degree of each
vertex is 6. Then

CM1(Cn) = n× 62 = 36n.
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Theorem 3.12. For complete graph Kn, where n ⩾ 3, CM1(Kn) = n[n2 −n]2.

Proof. Let Kn be the complete graph having order n and size n(n−1)/2. For n ⩾ 3, the closed neighborhood
degree of each vertex is [(n− 1)2 + (n− 1)]. Then

CM1(Kn) = n[(n− 1)2 + (n− 1)]2

= n[n2 −n]2.

Theorem 3.13. For complete bipartite graph Km,n, where m,n ⩾2,

CM1(Km,n) = m2n2(m+n) +mn(m+n) + 4m2n2.

Proof. Let Km,n be the complete bipartite graph having order m+ n and size mn. Here the vertex set
V(Km,n) can be partitioned into two sets V1 and V2 such that |V1| = m and |V2| = n. For m,n ⩾ 2, the
closed neighborhood degree of each vertex in V1 is n(m+ 1) and the closed neighborhood degree of each
vertex in V2 is m(n+ 1). Then

CM1(Km,n) = m× [n(m+ 1)]2 +n× [m(n+ 1)]2

= m[nm+n]2 +n[mn+m]2

= m2n2(m+n) +mn(m+n) + 4m2n2.

Theorem 3.14. For star graph K1,n, where n ⩾ 3, CM1(K1,n) = n[n2 + 6n+ 1].

Proof. Let K1,n be the star graph having order n+ 1 and size n. For n ⩾ 3, the closed neighborhood degree
of n pendant vertices is n+ 1 and the closed neighborhood degree of center vertex is 2n. Then

CM1(K1,n) = n(n+ 1)2 + 1(2n)2

= n3 +n+ 2n2 + 4n2

= n[n2 + 6n+ 1].

Theorem 3.15. For crown graph S0
n, where n ⩾ 3, CM1(S0

n) = 2n(n2 −n)2.

Proof. The crown graph S0
n have 2n vertices and n(n− 1) edges. For n ⩾ 3, the closed neighborhood degree

of each vertex is [(n− 1)2 + (n− 1)]. Then

CM1(S
0
n) = 2n[(n− 1)2 + (n− 1)]2

= 2n(n2 −n)2.

Theorem 3.16. For ladder graph Ln, where n ⩾ 5, CM1(Ln) = 288n− 472.

Proof. Let Ln be the ladder graph having order 2n and size n+2(n−1) . For n ⩾ 5, the closed neighborhood
degree of both end vertices is 7, the closed neighborhood degree of vertices which is adjacent to end vertex
is 11 and the closed neighborhood degree of remaining vertices is 2(n− 4). By definition of Ln, we have
following Table 4.
Using the values from Table 4 in equation 1.4, we obtain
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Table 4: Vertex partition of the ladder graph based on closed neighborhood degree.
SLn

[u], 7 11 12
where u ∈ V(Ln)

Number of vertices 4 4 2(n− 4)

CM1(Ln) = 4(7)2 + 4(11)2 + 2(n− 4)(12)2

= 196+ 484+ 288(n− 4)
= 288n− 472.

Theorem 3.17. For wheel graph Wn, where n ⩾ 4, CM1(Wn) = n(n2 + 34n+ 81).

Proof. The order and size of the wheel graph Wn is n+ 1 and 2n respectively. The closed neighborhood
degree of each corner vertex is 9 +n and the closed neighborhood degree of the center vertex is 4n. Then

CM1(Wn) = 1(4n)2 +n(9+n)2

= 16n2 + 81n+n3 + 18n2

= n(n2 + 34n+ 81).

Theorem 3.18. For gear graph Gn, where n ⩾ 3, CM1(Gn) = n(n2 + 30n+ 113).

Proof. The order and size of the gear graph Gn is 2n+ 1 and 3n respectively. By definition of Gn, the
center vertex is of degree n and outer layer vertex is of degree alternative 3 and 2. The closed neighborhood
degree of the center vertex is 4n, the closed neighborhood degree of each corner vertex adjacent to the center
vertex is n+ 7 and the closed neighborhood degree of remaining vertices is 8. Then

CM1(Gn) = 1(4n)2 +n(n+ 7)2 +n(8)2

= 16n2 +n3 + 49n+ 14n2 + 64n
= n(n2 + 30n+ 113).

Theorem 3.19. For friendship graph Fn, where n ⩾ 2, CM1(Fn) = 4n(2n2 + 17n+ 8).

Proof. The order and size of the friendship graph Fn is 2n+ 1 and 3n respectively. By definition of Fn, 2n
vertices are of degree 2 and the center vertex is of degree 2n. The closed neighborhood degree of the center
vertex is 6n and the closed neighborhood degree of the remaining vertices is 2n+ 4. Then

CM1(Fn) = 1(6n)2 + 2n(2n+ 4)2

= 36n2 + (8n3 + 32n+ 32n2)

= 4n(2n2 + 17n+ 8).

Theorem 3.20. For cocktail party graph CPn,n, where n ⩾ 2, CM1(CPn,n) = 2n(4n2 − 6n+ 2)2.

Proof. The order and size of the cocktail party graph CPn,n is 2n and 2n(n− 1) respectively. The closed
neighborhood degree of the each vertex is 4(n− 1)2 + 2(n− 1). Then

CM1(CPn,n) = 2n[4(n− 1)2 + 2(n− 1)]2

= 2n[4n2 + 4− 8n+ 2n− 2]2

= 2n(4n2 − 6n+ 2)2.
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Theorem 3.21. For helm graph Hn, where n ⩾ 3, CM1(Hn) = n(n2 + 51n+ 194).

Proof. The order and size of the helm graph Hn is 2n+ 1 and 3n respectively. By definition of Hn, the
center vertex is of degree n and outer pendent vertex is of degree 1 and the rest is of degree 4. The closed
neighborhood degree of center vertex is 5n, the closed neighborhood degree of outer pendent vertex is 5 and
the closed neighborhood degree of remaining vertices is 13+n. Then

CM1(Hn) = 1(5n)2 +n(13+n)2 + 25n
= 25n2 + 169n+n3 + 26n2 + 25n
= n(n2 + 51n+ 194).

4. Mathematical properties of the first closed neighborhood Zagreb index

In this section, we obtain bounds for the first closed neighborhood Zagreb index of graphs.

Theorem 4.1. Let G be a graph. Then

CM1(G) = NM1(G) +M1(G) + 4M2(G).

Proof. By using equation 1.4, we have
CM1(G) =

∑
u∈V(G)

SG[u]2

=
∑

u∈V(G)

[SG(u) + dG(u)]2

=
∑

u∈V(G)

[SG(u)2 + 2dG(u)2 + 2SG(u)dG(u)]

= NM1(G) +M1(G) + 4M2(G).

Theorem 4.2. Let G be a graph with n vertices and m edges, where n ⩾ 3. Then

CM1(G) ⩽ n(n4 +n2 − 2n3),

and equality holds if and only if G is isomorphic to Kn.

Proof. By Using equation 1.4, we have

CM1(G) =
∑

u∈V(G)

SG[u]2

=
∑

u∈V(G)

[SG(u) + dG(u)]2

⩽
∑

u∈V(G)

[(n− 1)2 + (n− 1)]2

⩽ n[n2 + 1− 2n+n− 1]2

⩽ n(n2 −n)2

Therefore,CM1(G) ⩽ n(n4 +n2 − 2n3).
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Corollary 4.3. Let G be a graph with n vertices, where n ⩾ 4. Then

36n− 76 ⩽ CM1(G) ⩽ n(n4 +n2 − 2n3),

where equality for lower bound holds for path and equality for upper bound holds for complete graph.

5. First closed neighborhood Zagreb index of some nanostructures

Nanostructures generally refer to the material systems that are in the range of 1 to 100 nanometers. In
a nanostructure, electrons are normally confined in one of the dimensions, whereas in the other dimensions,
they are free to move in all directions. The term nanostructure describes a particular kind of nanotube that
is specifically related to the investigation of topological characteristics in nanostructures. Because of their
small size and large surface area, these structures have special physical and chemical characteristics.

2D-lattice nanostructures are defined by a regular, grid-like configuration of molecules or atoms in two
dimensions, which resembles a flat, repeating pattern. Nanotubes are cylindrical nanostructures with a
hollow centre, composed of carbon atoms arranged in a hexagonal lattice. Depending on the quantity of
concentric tubes, these can be categorized as either single-walled or multi-walled. The toroidal (doughnut-
shaped) nanostructures known as Nanotorus can be seen as a 2D lattice that has been wound around to
create a torus. p and q stands for the number of squares in each row and the number of rows of squares,
respectively, in the nanostructures of TUC4C8(R)[p,q]. In this section, we provide explicit formulas for
calculating the FCNZI for various nanostructures by partitioning the vertex set of the TUC4C8(R)[p,q]
nanostructure based on closed neighborhood degree of subdivision graph and line graphs of subdivision
graphs [12, 14].

Figure 4: (a) 2D-lattice TUC4C8(R)[4, 3] (b) Nanotube TUC4C8(R)[4, 3] (c) Nanotorus TUC4C8(R)[4, 3]

Theorem 5.1. Let A be the 2D-lattice of TUC4C8(R)[p,q]. Then
(i)CM1(A) = 4[144pq− 63(p+ q) + 64],
(ii)CM1(S(A)) = 810pq− 520p− 299q+ 263,
(iii)CM1(L(S(A))) = 4[432pq− 244p− 190q+ 236].

Proof. (i) The 2D-lattice of TUC4C8[p,q] has order 4pq and size 6pq− p− q. The vertex partition of A is
obtained based on degree sum of closed neighbour vertices of each vertex is as follows:

Table 5: Vertex partition of graph A, when p > 1, q > 1
SA[u] 7 11 8 12

where u ∈ V(A)

Number of vertices 8 4(p+ q− 2) 2(p+ q− 4) 2[2pq− 3(p+ q) + 4]

Using Table 5 in equation 1.4, we get
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CM1(A) =
∑

u∈V(A)

SA[u]2

= 8× 72 + 4(p+ q− 2)× 112 + 2(p+ q− 4)× 82 + 2[2pq− 3(p+ q) + 4]× 122

= 392+ (4p+ 4q− 8)121+ (2p+ 2q− 8)64+ (4pq− 6p− 6q+ 8)144
= 4[144pq− 63(p+ q) + 64].

(ii) The subdivision graph of 2D-lattice TUC4C8[p,q] has order 10pq− p− q and size 2(6pq− p− q). The
vertex partition of S(A) is obtained based on degree sum of closed neighbour vertices of each vertex is as
follows:

Table 6: Vertex partition of graph S(A), when p > 1, q > 1
SS(A)[u] 6 7 8 9

where u ∈ V(S(A))

Number of vertices 2(p+ q+ 2) 4(p+ q− 2) (13p− 11) (10pq− 20p− 7q+ 15)

Using Table 6 in equation 1.4, we get

CM1(S(A)) =
∑

u∈V(S(A))

SS(A)[u]
2

= 2(p+ q+ 2)× 62 + 4(p+ q− 2)× 72 + (13p− 11)× 82 + (10pq− 20p− 7q+ 15)× 92

= (2p+ 2q+ 4)36+ (4p+ 4q− 8)49+ (13p− 11)64+ (10pq− 20p− 7q+ 15)81
= 810pq− 520p− 299q+ 263.

(iii) The line graph of subdivision graph of 2D-lattice TUC4C8[p,q] has order 2(6pq − p − q) and size
(18pq− 5p− 5q). The vertex partition of L(S(A)), based on degree sum of closed neighbour vertices of each
vertex is as follows:

Table 7: Vertex partition of graph L(S(A)), when p > 1, q > 1
SL(S(A))[u] 6 7 11 12

where u ∈ V(L(S(A)))

Number of vertices 2p 4[(p− 1) + (q− 1)] 4[(p− 1) + (q− 1)] (12pq− 12p− 10q+ 16)

Using Table 7 in equation 1.4, we get

CM1(L(S(A))) =
∑

u∈V(L(S(A))

SL(S(A))[u]
2

= 2p× 62 + 4[(p− 1) + (q− 1)]× 72 + 4[(p− 1) + (q− 1)]× 112

+ (12pq− 12p− 10q+ 16)× 122

= 2p× 36+ 4[(p− 1) + (q− 1)]× 49+ 4[(p− 1) + (q− 1)]× 121
+ (12pq− 12p− 10q+ 16)× 144
= 4[432pq− 244p− 190q+ 236].

Theorem 5.2. Let B be TUC4C8(R)[p,q] nanotubes. Then
(i)CM1(B) = 576pq− 252p− 126q+ 24,
(ii)CM1(S(B)) = 776pq− 418p− 71q,
(iii)CM1(L(S(B))) = 1728pq− 760p− 218q+ 92.
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Table 8: Vertex partition of graph B, when p > 1, q > 1
SB[u] 8 9 11 12

where u ∈ V(B)

Number of vertices 2(p+ 2) 2(q− 2) 4(p− 1) 2(2pq− 3p− q+ 2)

Proof. (i) The TUC4C8[p,q] nanotube has order 4pq and size 6pq− p. The Vertex partition of B, based
on degree sum of closed neighbour vertices of each vertex is as follows:
Using Table 8 in equation 1.4, we get

CM1(B) =
∑

u∈V(B)

SB[u]
2

= 2(p+ 2)× 82 + 2(q− 2)× 92 + 4(p− 1)× 112

+ 2(2pq− 3p− q+ 2)× 122

= 2(p+ 2)× 64+ 2(q− 2)× 81+ 4(p− 1)× 121
+ 2(2pq− 3p− q+ 2)× 144
= 576pq− 252p− 126q+ 24.

(ii) The subdivision graph of TUC4C8[p,q] nanotube has order 10pq− p and size 2(6pq− p). The vertex
partition of S(B), based on degree sum of closed neighbour vertices of each vertex is as follows:

Table 9: Vertex partition of graph S(B), when p > 1, q > 1
SS(B)[u] 5 6 7 8 9

where u ∈ V(S(B))

Number of vertices q 2p 4p+ q 8p+ q(p− 1) + p(q− 1) 8pq− 14p− q

Using Table 9 in equation 1.4, we get

CM1(S(B)) =
∑

u∈V(S(B))

SS(B)[u]
2

= q× 52 + 2p× 62 + (4p+ q)× 72 + [8p+ q(p− 1) + p(q− 1)]× 82

+ [8pq− 14p− q]× 92

= 25q+ 72p+ (4p+ q)49+ [8p+ q(p− 1) + p(q− 1)]64+ [8pq− 14p− q]81
= 776pq− 418p− 71q.

(iii) The line graph of subdivision graph of TUC4C8[p,q] nanotube has order 2(6pq− p) and size (18pq−
5p). The vertex partition of L(S(B)), based on degree sum of closed neighbour vertices of each vertex is as
follows:

Table 10: Vertex partition of graph L(S(B)), when p > 1, q > 1
SL(S(B))[u] 7 9 11 12

where u ∈ V(L(S(B)))

Number of vertices 4p 2q 4p+ 4(q− 1) 12pq− 10p− 6q+ 4

Using Table 10 in equation 1.4, we get
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CM1(L(S(B))) =
∑

u∈V(L(S(B)))

SL(S(B))[u]
2

= 4p× 72 + 2q× 92 + [4p+ 4(q− 1)]× 112 + [12pq− 10p− 6q+ 4]× 122

= 196p+ 162q+ 484p+ 484q− 484+ 1728pq− 1440p− 864q+ 576
= 1728pq− 760p− 218q+ 92.

Theorem 5.3. Let C be TUC4C8(R)[p,q] nanotorus. Then
(i)CM1(C) = 576pq− 126(p+ q),
(ii)CM1(S(C)) = 776pq− 275p− 71q,
(iii)CM1(L(S(C))) = 1728pq− 126(p+ q).

Proof. (i) The TUC4C8[p,q] nanotorus has order 4pq and size 6pq. The vertex partition of C, based on
degree sum of closed neighbour vertices of each vertex is as follows:

Table 11: Vertex partition of graph C, when p > 1, q > 1
SC[u] 9 12

where u ∈ V(C)

Number of vertices 2(p+ q) 4pq− 2(p+ q)

Using Table 11 in equation 1.4, we get

CM1(C) =
∑

u∈V(C)

SC[u]
2

= 2(p+ q)× 92 + [4pq− 2(p+ q)]× 122

= 2(p+ q)× 81+ [4pq− 2(p+ q)]× 144
= 576pq− 126(p+ q).

(ii) The subdivision graph of TUC4C8[p,q] nanotorus has order 10pq and size 12pq. The Vertex partition
of S(C), based on degree sum of closed neighbour vertices of each vertex is as follows:

Table 12: Vertex partition of graph S(C), when p > 1, q > 1
SS(C)[u] 5 7 8 9

where u ∈ V(S(C))

Number of vertices p+ q p+ q [2pq+ 12p− (p+ q)] 8pq− 13p− q

Using Table 12 in equation 1.4, we get

CM1(S(C)) =
∑

u∈V(S(C))

SS(C)[u]
2

= (p+ q)× 52 + (p+ q)× 72 + [2pq+ 12p− (p+ q)]× 82 + [8pq− 13p− q]× 92

= (p+ q)25+ (p+ q)49+ [2pq+ 12p− (p+ q)]64+ [8pq− 13p− q]81
= 776pq− 275p− 71q.

(iii) The line graph of subdivision graph of TUC4C8[p,q] nanotorus has order 12pq and size 18pq. The
vertex partition of L(S(C)), based on degree sum of closed neighbour vertices of each vertex is as follows:

Using Table 13 in equation 1.4, we get
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Table 13: vertex partition of graph L(S(C)), when p > 1, q > 1
SL(S(C))[u] 9 12

where u ∈ V(L(S(C)))

Number of vertices 2(p+ q) 12pq− 2(p+ q)

CM1(L(S(C))) =
∑

u∈V(S(C))

SL(S(C))[u]
2

= 2(p+ q)× 92 + [12pq− 2(p+ q)]× 122

= 2(p+ q)× 81+ [4pq− 2(p+ q)]× 144
= 1728pq− 126(p+ q).

6. Conclusion

In the field of chemical graph theory, the research conducted in the framework of the line graph operator
is a novel approach to structural chemistry. In this paper, we introduced new degree based topological
index called first closed neighborhood Zagreb index. These topological indices are help us to understand the
physico-chemical properties such as Entropy, Enthalpy, Acentric factor and DHVAP etc. FCNZI is highly
correlate with acentric factor. Finally we have obtained explicit formulae of first closed neighborhood Zagreb
index for some nanostructures such as 2D-Lattice, Nanotube and Nanotorus.
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